Effects on Amorphous Silicon Photovoltaic Performance from High-Temperature Annealing Pulses in Photovoltaic Thermal Hybrid Devices

نویسندگان

  • M. Pathak
  • Joshua M. Pearce
  • S. J. Harrison
چکیده

There is a renewed interest in photovoltaic solar thermal (PVT) hybrid systems, which harvest solar energy for heat and electricity. Typically, a main focus of a PVT system is to cool the photovoltaic (PV) cells to improve the electrical performance, however, this causes the thermal component to under-perform compared to a solar thermal collector. The low temperature coefficients of amorphous silicon (a-Si:H) allow for the PV cells to be operated at higher temperatures and are a potential candidate for a more symbiotic PVT system. The fundamental challenge of a-Si:H PV is light-induced degradation known as the Staebler-Wronski effect (SWE). Fortunately, SWE is reversible and the a-Si:H PV efficiency can be returned to its initial state if the cell is annealed. Thus an opportunity exists to deposit a-Si:H directly on the solar thermal absorber plate where the cells could reach the high temperatures required for annealing. In this study, this opportunity is explored experimentally. First a-Si:H PV cells were annealed for 1 hour at 100 ̊C on a 12 hour cycle and for the remaining time the cells were degraded at 50 ̊C in order to simulate stagnation of a PVT system for 1 hour once a day. It was found that, when comparing the cells after stabilization at normal 50 ̊C degradation, this annealing sequence resulted in a 10.6% energy gain when compared to a cell that was only degraded at 50 ̊C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted epitaxial growth during thermal crystallization of nanocrystalline silicon: experiments and modeling

Hydrogenated nanocrystalline silicon (nc-Si:H) has attracted greater attention because of its improved transport properties with respect to hydrogenated amorphous silicon (a-Si:H) [1]. In addition, its deposition conditions are compatible with amorphous silicon technology which makes it possible to use both materials in the same device. In this sense, it has been proposed as a candidate for the...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

The effect of SiO2 nanoparticle on the performance of photovoltaic thermal system: Experimental and Theoretical approach

The low conversion efficiency of solar cells produces large amounts of thermal energy to the cells, and with an increase in the temperature of solar cells, their electrical efficiency decreases. Therefore, a hybrid photovoltaic thermal system improves the overall efficiency of the system by adding thermal equipment to the solar cell and removing excessive heat from these cells. In this paper, w...

متن کامل

Analysis of Temperature Effect on a Crystalline Silicon Photovoltaic Module Performance

In this paper, the effect of the cell-temperature on the performance of photovoltaic (PV) module is evaluated. The evaluation is based on a mathematical module (single diode equivalent circuit) and practically based on solar module tester (SMT). Solara®130W PV crystalline silicon module was used in this simulation. The SMT is able to supply a constant irradiance level (1000W/m2) or any other de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016